MATH 1A - MIDTERM 1 - SOLUTIONS

PEYAM RYAN TABRIZIAN

1. (10 points) Find the domain of $f(x)=\ln (x)+\sqrt{1-x^{2}}$

We want:
(i) $x>0$ (because the number under the \ln has to be positive)
(ii) $1-x^{2} \geq 0$ (the number under the $\sqrt{ }$ has to be nonnegative), which is the same as $x^{2} \leq 1$, which is the same as $-1 \leq x \leq 1$

Combining those two facts (draw a picture if necessary), we get that the domain of f is: $0<x \leq 1$, that is, $(0,1]$
2. (10 points, 5 points each) In the following problem, you do not have to graph the resulting functions. BE BRIEF!

Note: You may use the words 'Shift up/down/left/right', 'Stretch/Compress horizontally/vertically by a factor of ...' and 'Flip about the x / y axis'.
(a) Explain in words how to obtain the graph of $y=2-x^{2}$ from the graph of $y=x^{2}$

1) Flip the graph of $y=x^{2}$ about the x-axis
2) Shift the resulting graph up 2 units.
(b) Explain in words how to obtain the graph of $y=\cos (2 x+3)$ from the graph of $y=\cos (x)$
3) Shift the graph of $y=\cos (x)$ to the left 3 units
4) Compress the resulting graph horizontally by a factor of 2
3. (10 points) Find $f^{-1}(x)$, where $f(x)=1+e^{x^{3}}$

Note: Make sure to write your final answer in terms of x.

1) Let $y=1+e^{x^{3}}$
2)

$$
\begin{aligned}
y & =1+e^{x^{3}} \\
y-1 & =e^{x^{3}} \\
\ln (y-1) & =\ln \left(e^{x^{3}}\right) \\
\ln (y-1) & =x^{3} \\
x^{3} & =\ln (y-1) \\
x & =\sqrt[3]{\ln (y-1)}
\end{aligned}
$$

3) Hence $f^{-1}(x)=\sqrt[3]{\ln (x-1)}$
4. (15 points) Evaluate $\tan \left(\cos ^{-1}(x)\right)$

Note: Show your steps. You are not just graded on the correct answer, but also on the way you write up your answer.

Let $\theta=\cos ^{-1}(x)$, then $\cos (\theta)=x$.
1A/Handouts/Examtriangle.png

Then:

$$
\tan \left(\cos ^{-1}(x)\right)=\tan (\theta)=\frac{A C}{A B} \stackrel{P Y T H}{=} \frac{\sqrt{1-x^{2}}}{x}
$$

5. (40 points, 5 points each) Evaluate the following limits (or say 'it does not exist'). Briefly show your work!, and do NOT use l'Hopital's rule :
(a)

$$
\lim _{x \rightarrow \infty} \frac{1}{2 x-1}=\frac{1}{\infty}=0
$$

(b)

$$
\lim _{x \rightarrow 3^{+}} \frac{e^{x}}{x-3}=\frac{e^{3}}{0^{+}}=\infty
$$

(c)

$$
\begin{aligned}
\lim _{x \rightarrow 1} \frac{\sqrt{x+3}-2}{x-1} & =\lim _{x \rightarrow 1} \frac{(\sqrt{x+3}-2)(\sqrt{x+3}+2)}{(x-1)(\sqrt{x+3}+2)} \\
& =\lim _{x \rightarrow 1} \frac{x+3-4}{(x-1)(\sqrt{x+3}+2)} \\
& =\lim _{x \rightarrow 1} \frac{x-1}{(x-1)(\sqrt{x+3}+2)} \\
& =\lim _{x \rightarrow 1} \frac{1}{\sqrt{x+3}+2} \\
& =\frac{1}{\sqrt{4}+2} \\
& =\frac{1}{4}
\end{aligned}
$$

(d)
$\lim _{x \rightarrow \infty} \frac{x^{2}+2 x+3}{x^{2}-2 x+3}=\lim _{x \rightarrow \infty} \frac{x^{2}\left(1+\frac{2}{x}+\frac{3}{x^{2}}\right)}{x^{2}\left(1-\frac{2}{x}+\frac{3}{x^{2}}\right)}=\lim _{x \rightarrow \infty} \frac{1+\frac{2}{x}+\frac{3}{x^{2}}}{1-\frac{2}{x}+\frac{3}{x^{2}}}=\frac{1}{1}=1$
(e)
$\lim _{x \rightarrow 2} \frac{x^{2}-4 x+4}{x^{2}-2 x+3}=\lim _{x \rightarrow 2} \frac{(x-2)^{2}}{(x-2)(x-1)}=\lim _{x \rightarrow 2} \frac{x-2}{x-1}=0$
(f)

$$
\begin{aligned}
\lim _{x \rightarrow-\infty} \frac{\sqrt{x^{2}+1}}{x} & =\lim _{x \rightarrow-\infty} \frac{\sqrt{x^{2}} \sqrt{1+\frac{1}{x^{2}}}}{x} \\
& =\lim _{x \rightarrow-\infty} \frac{|x| \sqrt{1+\frac{1}{x^{2}}}}{x} \\
& =\lim _{x \rightarrow-\infty} \frac{-x \sqrt{1+\frac{1}{x^{2}}}}{x} \\
& =\lim _{x \rightarrow-\infty}-\sqrt{1+\frac{1}{x^{2}}} \\
& =-1
\end{aligned}
$$

(g) $\lim _{x \rightarrow 0} \frac{|x|}{x}$

$$
\begin{gathered}
\lim _{x \rightarrow 0^{+}} \frac{|x|}{x}=\lim _{x \rightarrow 0^{+}} \frac{x}{x}=\lim _{x \rightarrow 0^{+}} 1=1 \\
\lim _{x \rightarrow 0^{-}} \frac{|x|}{x}=\lim _{x \rightarrow 0^{-}} \frac{-x}{x}=\lim _{x \rightarrow 0^{-}}-1=-1
\end{gathered}
$$

Since the left-hand-side and the right-hand-side limits are unequal, the limit does not exist
(h) $\lim _{x \rightarrow 0} x^{4} \cos \left(\frac{4}{x}\right)$

$$
-1 \leq \cos \left(\frac{4}{x}\right) \leq 1, \text { so }-x^{4} \leq x^{4} \cos \left(\frac{4}{x}\right) \leq x^{4}
$$

But since $\lim _{x \rightarrow 0}-x^{4}=\lim _{x \rightarrow 0} x^{4}=0$, by the squeeze theorem, $\lim _{x \rightarrow 0} x^{4} \cos \left(\frac{4}{x}\right)=0$.
6. (15 points) Show that the equation $x^{3}+x-1=0$ has at least one solution. Show your work: You will be graded not only on the correct answer, but also on the way you write up your answer

Let $f(x)=x^{3}+x-1$.
Then $f(0)=-1<0$, and $f(1)=1>0$, and since f is continuous (it is a polynomial), by the intermediate value theorem, $f(x)$ has at least one zero on $[0,1]$, hence $x^{3}+x-1=0$ has at least one solution.

Bonus 1 (5 points) Suppose you are taking an elevator up from the $1^{\text {st }}$ floor to the $3^{\text {rd }}$ floor, and suppose that at the same time, your friend is taking a similar elevator down from the $3^{\text {rd }}$ floor to the $1^{\text {st }}$ floor. Assuming that the motion of the elevators is continuous, and that both of you get out of your elevators after 1 minute, show that there is one time where you two are on the same level. (so if the elevators were transparent, you could wave at your friend)

Hint: Let $g(t)$ be the height of your elevator at time t, and let $h(t)$ be the height of your friend's elevator at time t. Consider the function $f(t)=g(t)-h(t)$

This is very similar to the previous question:
Let f, g, h be defined as in the hint.
Then $f(0)=g(0)-h(0)=1-3=-2<0$, and $f(1)=$ $g(1)-h(1)=3-1=2>0$. And since f is continuous (assuming that the motion of the two elevators is continuous), by the Intermediate Value Theorem, there is one time c where $f(c)=0$.

At that time $c, f(c)=g(c)-h(c)=0$, so $g(c)=h(c)$, which means that at time c, the two elevators have the same height.

Bonus 2 (5 points) Let f be any function.
(a) Show that the function $g(x)=\frac{f(x)+f(-x)}{2}$ is always even.

$$
g(-x)=\frac{f(-x)+f(x)}{2}=\frac{f(x)+f(-x)}{2}=g(x)
$$

So g is even.
(b) Show that the function $h(x)=\frac{f(x)-f(-x)}{2}$ is always odd.

$$
h(-x)=\frac{f(-x)-f(x)}{2}=\frac{-(f(x)-f(-x))}{2}=-h(x)
$$

So h is odd.
(c) Using (a) and (b), show that any function f can be written as a sum of an even function and an odd function. (this is called the even/odd decomposition of f, and in fact it is unique)

Let g and h be defined as above. Then:

$$
g(x)+h(x)=\frac{f(x)+f(-x)}{2}+\frac{f(x)-f(-x)}{2}=\frac{2 f(x)}{2}=f(x)
$$

So $f(x)=g(x)+h(x)$, which says precisely that f is the sum of an even function (g) and an odd function (h).
(d) If $f(x)=e^{x}$, calculate g and h as in (a). Do you happen to know the names of those two functions?
$g(x)=\frac{e^{x}+e^{-x}}{2}=\cosh (x)$ and $h(x)=\frac{e^{x}-e^{-x}}{2 x}=\sinh (x)$. So, in other words, $\cosh (x)$ is the even part of e^{x} and $\sinh (x)$ is the odd part of e^{x}. How cool is that?

